2. Założenia wejściowe - kryteria uwarunkowań ekofizjograficznych

2.1. Uwarunkowania przyrodnicze i ekologiczne. Planistyczne kryteria równowagi przyrodniczej - wyznaczania terenów wskazanych do pelnienia funkcji przyrodniczych i użytkowych

Jeżeli za podstawowy cel ekofizjografii uznaje się profbe odpowiedzi na pytanie: w jaki sposób powinno kształtować się struktury przestrzenne, aby na danym terytorium osiagnąé stan dynamicznej równowagi przyrodniczej (ekologicznej rownowagi Srodowiska przyrodniczego) oraz równowagi ekologicznej terenów o funkcjach użytkowych (ekologicznej rownowagi strodowiska człowieka - miejsc jego zamieszkania, pracy i wypoczynku) to podstawowym problemem do rozwiazanie jest uprzednia odpowiedź na pytanie: w jaki sposób mierzyç równowage przyrodnicza oraz rớwnowagé ekologiczna na gruncie planowania przestrzennego?

Podstawe metodyczna tworza oczywiscie metody badawcze wypracowane na gruncie nauk przyrodniczych (geografii, biologii, ekologii i ekologii krajobrazu itp.) oparte na podejsciu systemowym, ale do bezpostedniego zastosowania dla celow praktycznych, do planowania przestrzennego należy je odpowiednio przystosować.

Założenia podstawowe sq nastepujace:

- na pewno jakakolwiek ocena stanu równowagi musi wynikać z kompleksowej, funkcjonalnej analizy struktur środowiska, a taka można przeprowadzać jedynie w przestrzennych jednostkach przyrodniczo-ekologicznych majacych charakter hierarchicznej struktury geokompleksow (por. spis literatury, szczegolnie prace Tokatskiego, Richlinga, Bartkowskiego i Kistowskiego);
- równowaga ekologiczna środowiska życia człowieka (przejawiajaca się w korzystnych warunkach zdrowia i z̀ycia, dobrym samopoczuciu) jest możliwa jedynie w przypadku zapewnienia whaściwego funkcjonowania środowiska przyrodniczego w obrebie geosystemów (przyrodniczej rownowagi geosystemowej), mierzonych odpowiedni przebiegiem podstawowych procesów obiegu energii i materii w srodowisku: obiegu wody, obiegu powietrza i obiegu biogenów;

Jako podstawowe założenie do naszych prac (czyli zarówno jako wstępny postulat do konstruowania metody ocen ekofizjograficznych, jak i kryterium weryfikacji efektow prac: uwarunkowań, projektu plany i jego realizacji) przyjmujemy, ze komponentem decydujacym o życiu biologicznym oraz gospodarczym, czyli o rownowadze przyrodniczej jest WODA, a najważniejszym procesem wpływającym na stan równowagi przyrodniczeij jest obieg wody w zlewni. Tym samym rớwnowage przyrodnicza oceniamy przede wszystkim wg charakteru struktury obiegu wody w zlewni oraz w jej czếciach. Takim komponentem jest woda, a procesem wiażacym obieg wody w zlewni hydrograficznej. ${ }^{2}$.

Podstawą dla ksztaltowania stanu rownowagi przyrodniczej jest kształtowanie prawidłowych stosunkow wodnych w obrębie zlewni. Prawidłowe stosunki wodne to wyrownana struktura obiegu wody oraz jej jakosc. One to decyduja o poziomie i stanie zasobow wodnych, zarơwno mienaruszalnych (dla tycia biologicznego) jak i dyspozycyjnych (dla życia gospodarczego). W zlewniach odbywaja się również pozostał podstawowe procesy wphywajace na stan ekologiczny terenu - obieg powietrza (lokalny) i obieg biogenów. Od tego pierwszego zależa warunki klimatyczno-zdrowotne, od drugiego rơwnowaga i stabilnose ekosysternow.

Podstawowym narzędziem planistycznym stużącym ksztaltowaniu wyrównanego obiegu jest odpowiednie zagospodarowanie terenow w poszczegblnych strefach zlewni, zarówno w postaci określenia własciwych proporcji pomiędzy ekosystemami naturalnymi a kulturowymi, jak tè wskazania optymalnego rozmieszczenia tychze; wskazania miejsc, w których konieczne użytkowanie przyrodnicze (dominacja powierzchni biologicznie czynnych, przede wszystkim w postaci naturalnych ekosystemów o dużej retencyjnosci), a na obszarach pozostałych wskazanie najkorzystniejszych terenow do pełnienia rṑnych funkcji az̀ytkowych (wraz ze wskazaniem na pożądane formy i dopuszczalną intensywnosé zagospodarowania).

Kryteria identyfikacji terenow najistotniejszych dla pelnienia zachowania lub odnowy równowagi przyrodniczei

1. Struktura użytkowania w obrębie geosystemów (zlewni). Z punktu widzenia obiegu wody najistotniejsza jest ochrona stref wododziałowych, zrodliskowych oraz dolinnych
przed zabudowa techniczna. Zachowanie biologicznej powierzchni na tych obszarach umożiliwia prowadzenie intensywnej działalności spoteczno gospodarczej bez załamania moz̀liwości zachowania równowagi przyrodniczej oraz ksztattowanie własciwych klimatycznie i krajobrazowo warunków zycia czlowieka. Ochronie przed zainwestowaniem raz osuszaniem powinny podlegać naturalne tereny podmokle i bagienne. Prace melioràcyjne na terenach uizytkowanych rolniczo i przez gospodarkẹ léfna powinny mieć charakter regulacyjny (w nawiazaniu do naturalnych potrzeb zlewnii) a nie tylko osuszajacy.
2.Jednym z najważniejszych elementów wpływajacych na stan równowagi przyrodniczej jest udział ilosciowy lasow w strukturze uzytkowania terenow (lesistos ℓ), oraz rodzaj lasów i ich rozmieszczenie w obrẹbie zlewni (wskaźnik rozwiniẹcia lesistosci).
a)Lesistost. W polityki lesnej pantstwa jednym, z głownych zadan jest zwiẹkszenic lesistosci kraju do poziomu 30% w roku 2020 i 33% po roku 2050 (w porównaniu do $28,4 \%$ wg danych na 2001). Badania i prace studiaine wykazuja bowiem, zee racjonalna lesistose Polski z punktu widzenia struktury użytkowania ziemi w kontekście ksztaltowania i ochrony stodowiska na obecnym etapie rozwoju cywilizacyjnego powinna wynosit 33 34%.

Biorąc pod uwage oczywiste różnice w lesistớci miast i gmin wiejskich można wiẹc przyjać, że uzyskanie prawidłowej struktury lesistosci wymaga co najmniej $20-25 \%$ udziatu lasów w miastach i co najmniej 40% udziału w gminach wiejskich o dominacji funkcji produkcyjnych. W gminach o funkcjach ochronnych powinien nie być mniejszy niz̀ 60%.
b)Ochronie podlegaja wszystkie ekosystemy, a w szczególności leśne, a charakterze naturalnym i z występujacymi gatunkami rodzimymi lub endemicznymi - tereny te należy objać ochtona prawna. Należa do nich np. lasy ochronne o strukturze drzewostanu odpowiadajacej cechom siedliska. Ekosystemy naturalne lub zblizone do naturalnych o funkcjach wodochronnych, glebochronnych i klimatotwórczych powinny dominowac \mathbf{w} najważniejszych strefach zlewni, czyli wododziałowych, źródliskowych i dolinnych; warunkiem wysokiego potencjału ekosystemów dolinnych (legowych, łakowych) jest naturalny lub zblizony do naturalnego charakter koryt rzecznych. Zlewnie o wskaźniku rozwi-
nięcia lesistosci poniżej 50% (bez wzgledu na stopień ich zalesienia) należy uznać za obszary o niekorzystnej przyrodniczo strukturze użytkowania terenu.
c)Istotny jest jednak nie tylko bezwzgledny wskaźnik lesistości, lecz równiéz wskaźnik roznnieszenia lasów w obrębie zlewni. Zbiorowiska roslinnosci wysokiej, najlepiej o charakterze naturalnym, lub co najmniej inne powierzchnie biologicznie czynne charakteryzujace się wysoka chłonnościa wodną (retencyjnościa) powinny zajmować powierzchnie wododziałowe. Powierzchnie stref dolinnych wymagaja
2.Rodzaje ekosystemów (krajobrazów). Z badafi nad krajami uprzemyskowionymi wynika, że w optymalna proporcja w geosytemach zurbanizowanych (głównych zlewniach obejmujacych obszary miast i intensywnie rolniczo użytkowanych gminach wiejskich) jest następujaca: ekosystemy (krajobrazy) naturalne (czyli głownie lasy oraz zbiorowiska łako-wo-pastwiskowe o ekstensywnym typie użytkowania) powinny zajmować około 40% powierzchni zlewni. Na obszarach pozostałych (ekosystemy zurbanizowane i agrosystemy, czyli krajobrazy kulturowe) udział powierzchni biologicznie czynnej w strukturze terenów zainwestowanych powinien wynosić co najmniej 50%; w innym przypadku obszar zlewni naležy uznac za podlegajacy samoczynnej degradacji (o stopniu nasilenia wynikajacym z poziomu zanieczyszczeŕ poszczególnych komponentów środowiska), co objawia sie obniżeniem potencjału ekologicznego terenớw użytkowych: następuje degradacja walorów zdrowotno-klimatycznych, zmniejsza się efektywność gospodarowania (w aspekcie jakosciowym) w dziedzinach uzależnionych od stodowiska (rolnictwo, rekreacja, gospodarka leśna) oraz obserwuje się proces samoczynnej dewaloryzacji krajobrazu.

Inną forma oceny stopnia przekształcenia zlewni jest wskaźnik degradacji ekologicznej terenu Siuty. Mówi on nam, że jeżeli w obrẹbie jednostki funkcjonalnej udział zabudowy technicznej przekracza 20%, jednostka ta podlega automatycznej degradacji przyrodniczej;

Kryteria identyfikacji terenów o najkorzystniejszych warunkach ekologicznych dla funkcji użytkowych

Kryteria służace za podstawę oceny można podzielić na dwie zasadnicze kategorie:
A) kryteria budowlane dla budownictwa mieszkaniowego i innych budowli towarzyszacych strefom zamieszkania,
B) kryteria produkcyjne dla gospodarki rolnej,
C) kryteria przyrodniczo-krajobrazowe.

Pierwsze (A i B) nazywane beda kryteriami fizjograficznymi i służa odpowiedzi na pytania „jaka funkcje o jakim charakterze można zlokalizowac w okreslonych miejscach terenu opracowania ze względu na cechy podłoża?" (cechy przydatnościowe dla zabudowy mieszkaniowej i dla rolnictwa). Drugie (C), ekofizjograficzne okresflaja walory klimatycznoz drowotne oraz estetyczno-krajobrazowe.

Podstawowym problemem do rozwiazania (a rym samym do oceny) w realizacji srodowiskowego aspektu zasad zrównoważonego rozwoju na terenach rolniczych, wiejskich i podmiejskich (również w strefach komunikacji), jest dązenie do zapewnienia najkorzystniejszych warunków zamieszkania, pracy i wypoczynku, przejawiajacych się w pozytywnych cechach krajobrazowych. Walory krajobrazowe, które z punktu widzenia srodowiska przyrodniczego oznaczaja charakter wzajemnego kształtowania stosunków przestrzennych pomiedzy terenami zieleni a terenami zabudowy technicznej (odczucia harmonii i ładu), sa syntetycznym wyrazem zarówno prawidłowości wykształcenia struktury elementów środowiska, poziomu jego funkcjonowania oraz warunkow zdrowornych determinowanych śodowiskowo (głównie klimatyczno-zdrowotnych). Tym samym jeżeli przyjmujemy, że najważniejsza funkcja ekologiczna terenớw miejskich jest funkcja klimatyczno-zdrowotna (w aspekcie fizycznym i psychicznym), to walory krajobrazowe (funkcjonalne i wizualne) wraz z oceną stanu zanieczyszczent środowiska tworzq podstawę dla kryteriów jej oceny a następnie dla wskazań planistycznych służących prawidłowemu jej kształtowaniu.

Wynika z tego, ze dobre, korzystne warunki zdrowotne terenu ze wzgledu na cechy środowiska oznaczaja występowanie harmonijnego krajobrazu (odpowiednie połaczenie zainwestowania, zieleni i wód sprawiajace wrażenie ładu) oraz poziomu zanieczyszczeń elementów środowiska poniżej dopuszczalnych norm. A takie cechy dla obszaru zurbanizowanego można uzyskać, jeżeli potraktuje się go jako ekosystem miejski (geosystem) złożony z podsystemów biourbanistycznych. I tak, w przypadku terenów przeznaczonych dla funkcji usługowych i wytwórczych, tworzenie harmonii przestrzennej i ladu krajobrazowego oraz minimalizacja negatywnego oddziaływania na środowisko w zakresie zanieczyszczeń, oznacza przekształcanie dotychczasowych i budowe nowych obiektów w postaci parków technologii i nauki przy stosowaniu tzw, najlepszej dostępnej techniki (rozumianej zgodnie
z definicja z Prawa ochrony środowiska). Realizacja funkcji rolniczej polega na ochronie krajobrazu rolnego i wiejskiego, zachowaniu lub odtworzeniu aktywności biologicznej glebs oraz najkorzystniejszych walorów użytkowych poprzez kształtowanie optymalnych warunkơw powietrzno-wodnych i agroklimatycznych. Służa temu odpowiednio założone i piełégnowane zadrzewienia sródpolne, regulujace wilgotność gleb i oddziaływanie wiatrów oraz ograniczajace erozję. W przypadku terenów mieszkaniowych chodzi o tworzenie zespolów mieszkaniowych w postaci kompleksów urbanistyczno-architektonicznych opartych o ruszt komunikacji i zieleni miejskiej, o korzystnych warunkach nawietrzania i przewietrzania. Obszary mieszkaniowe i inne stałego przebywania człowieka charakteryzować wiec powinien harmonijny krajobraz przy braku zastoisk powietrza, obszarớw inwersyjnych, stref kumulacji zanieczyszczeń powietrza.

Kształtowanie $\mathbf{i} /$ lub poprawa użytkowania terenów w miastach, czyli całej strefy zamieszkania obejmujacej tereny mieszkaniowe, wytwórcze, usługowe, komunikacyjne i in. w ramach rozwoju zrơwnoważonego, powinna polegać na równoważeniu układu przestrzennego miasta w postaci układów przestrzennych selektywnie zwartych, tzn. takich ktơre wykorzystuja zalety oraz unikaja wad zarówno procesów koncentracji, jak i dekoncentracji. Racjonalność układu selektywnie zwartego powinna uwzględniać i umożliwiać koniecznosé równoczesnego spełniania kryteriớw biologiczno-zdrawotnych i wymogów społeczno-ekonomicznych. Szczególna uwage należy poświęcić strefom zewnetrznym miasta, ponieważ ze względu na bezposredni kontakt z terenami otwartymi i zielonymi oraz z uwagi na brak szkodliwych przegeszczeń charakterystycznych dla obszarów sródmiejskich, wysteppuja najlepsze warunki biologiczno-zdrowotne. Stosowane dotychczas modele rozwoju były selektywne i jednostronne, czyli naruszały równowage przestrzeni. Nie jest korzystna ani nadmierna koncentracja lub rozproszenie, ani ich brak. Stosowany dotychczas powszechnie (mniej więcej do końca lat 80 -tych) podział na podsystem(y) zabudowany i podsystem ekologiczny doprowadził do patologicznego rozwoju wielu miast wg wzoru rozlewajacego się kleksa na bibule, który tworzy same bariery, nie pozwalajac na prawidłowe funkcjonowanie żadnego z podsystemów. Naturalnym skutkiem takiego modelu był fakt pochłaniania terenów zielonych i otwartych przez powszechną betonowa zabudowę wysoka. Zmiana modelu po roku 1990 nie przyniosła zmian na lepsze, przyniosła tylko zmianę formy degradacji przestrzeni przez model ekstremalnie odmienny, polegajacy na maksy-
malnie rozproszonym i zazwyczaj chaotycznym, nieskoordynowanym wyłanianiu się różnorodrej zabudowy miejskiej na terenach podmiejskich i pomiedzy miastami. Nie wiadomo dlaczego załozono, że skoro koncentracja i planowosć była niekorzystna, to optymalne bedzie rozproszenie polaczone z bezplanowoscia. A przecièz od czasow starożytnofci wiadomo, ze najlepszy jest złoty środek, czyli równowaga pomiedzy skrajnościami, czyli wspornniany układ selektywnie z warty ${ }^{3}$.

Aby maksymalnie uniknać błędơw lat poprzednich, ocenẹ terenu dla funkcji użytkowych przeprowadza się po wykonanej analizie funkcjonowania terenu i okresteniu predyspozycji do osiaganià stanu równowagi przyrodniczej. Waloryzacja dla funkcji użytkowych ma charakter oceny oprymalizacyjnej.
A. Funkcja przydatnosci środowiska do zabudowy (funkcja budowlana środowiska, warurkt budowlane)

Określenie warunki budowlane dotyczy cech geotechnicznych i hydrogeologicznych terenu pod katem własciwosci budowlanych. Generalnie korzystne warunki, czyli zdatne do zabudowy, posiadaja tereny suche, o odpowiednio glebokim pierwszym poziomie wód gruntowych (głebiej niż $1,5 \mathrm{~m}$ p.p.t.) oraz posiadajagce grunty o dobrej nosności. Istotnym kryterium sa rownież spadki terenu, terenu o nachyleniach przewyíszajacych 10% wykazuja ograniczenia zabudowy.

Dotyczy to np. utworów czwartorzedowych składajacych się z osadów ziwirowopiaszczystych oraz glin zwałowych. Wody gruntowe w takich utworach sa odpowiednio glęboko dla zabudowy ale równiez̀ łatwo dostepne dla świata roslinnego, czyli umożliwiaja wegetację biologicznc. Inaczej - wody gruntowe występuja tutaj odpowiednio nisko dla zabudowy, a odpowiednio wysoko dla roślinności. Warunki budowlane pogarszaja się w przypadku występowania osiadaf! i szkod gorniczych. W zależności od przepuszczalności podłoża wystẹpuja bowiem zawodnienia (žle dla zabudowy) lub odwodnienia (žle dla ekosystemów). Dla intensywnej zabudowy, tereny znajdujace sié pod wpływem eksploatacji górniczej, bez wzgledu na budowe, sa niewskazane.

Terenami natomiast nie nadajacymi sie zupetnie do zabudowy sa obszary nisko połozonych zboczy dolin rzecznych oraz obszary obnizéń i podmokłości.

Niebezpieczne sa rownież pod zabudowe zbocza dolin rzecznych, zwlaszcza w miejscach wystẹpowania iłów mioceńskich, lessu czy fliszu. Czestym zjawiskiem moga być osuwiska.
B. Za kryteria walorów rolniczych uznaje się:

1) rodzaje i kategorie przydatnosci gleb,
2) warunki morfometryczne i współczesne procesy morfodynamiczne,
3) stosunki wodne,
4) mikroklimat i zanieczyszczenia,
5) rodzaj użytkowania i „zabudowy" roślinnościa (za potencjalne tereny rolne uznaje się tereny otwarte pozbawione zwartej szaty roslinnej)
W rezultacie waloryzacji wskazuje się tereny:
1. Nadajace się do intensywnego użytkowania jako grunty rolne - uwarunkowania i wskazania;
2. Obszary możliwe do wykorzystania jako grunty rolne pod określonymi warunkami; wskazania;
3. Obszary niewskazane jako użytki rolne wymagajace zalesienia lub zadarnienia.

C. Funkcja krajobrazowo-przyrodnicza

W przypadku terenów opracowania jednym z głównym problemów do uwzglednienia z punktu widzenia kryteriów ekofizjograficznych jest przebieg autostrady i oddziaływania jakie niesie za soba. Przy założeniu, że jej przebieg jest juz̀ przesadzony (pomiedzy terenami zmiany planu), m.in. chodzi o takie uksztaltowanie jej formy i szczegółowego przebiegu, by bezpośrednie i pośrednie negatywne oddziaływanie na walory przyrodniczo-krajobrazowe oraz funkcjonalno-przestrzenne terenów zmian planu były jak najmniejsze, a może nawet w niektórych elementach pozytywne.

Za kategorie walorów przyrodniczo-krajobrazowych uznaje się w zwiazku z tym:

1) warunki klimatyczno-zdrowotne, wyrażane przez warunki przewietrzania terenu oraz ekspozycję terenu w kontekście spadków,
2) warunki podatności terenu na imisje zanieczyszczeń w przypowierzchniowej warstwie atmosfery,
3) krajobrazowe, estetyczne warunki otoczenia,

Ad 1) Przy wyróżnianiu i ocenianiu terenu pod wzgledem klimatyczno-zdrowotnym uwzględnia się przede wszystkim:
a) czestotliwość występowania i wielkość inwersji;
b) stopieñ nawietrzania i przewietrzania terenu;
c) częstotliwość, kierunki i siłẹ wiatru;
d) nasłonecznienié zwiazzane z ekspozycja i spadkami terenu;

Do najkorzystniejszej klasy klimatyczno-zdrowotnej zalicza siẹ tereny, na których większośt z omawianych czynnikow wysteqpuje pozytywnie a pozostałe obojętnie.

Do korzystnej klasy klimatyczno-zdrowotnej zalicza się tereny, na których większość z omawianych czynników występuje obojętnie a pozostałe korzystnie.

Do niezbyt korzystnej, korzystnej warunkowo klasy klimatyczno-zdrowotnej zalicza się tereny, na ktơrych co najwyżej dwa czynniki występuja negatywnie i w warunkach ekonomicznie uzasadnionych nie można wprowadzić zmian, a pozostałe czynniki wystepuja pozytywnie lub obojetnie, albo wszystkie czynniki występuja obojętnie lub negatywnie z tym, że istnieje realna możliwość zmiany ich na obojetne lub pozytywne w zależności od sytuacji lokalnej.

Do niekorzystnej klasy klimatyczno-zdrowotnej zalicza się tereny, na których większość czynnikớw występuje negatywnie i nie istnieje realna możliwość zmiany ich na obojętne badź pozytywne.

Ad 2)Przy wyróżnianiu i ocenianiu podatności terenu na imisję uwzględnia się przede wszystkim:
a) warunki przewietrzania, zwiazane z podatnościa terenu na inwersje, warunkami do występowania tzw. cienia wiatrowego;
b) gestością i intensywnością zabudowy i pokrycia terenu;
c) rozmieszczeniem i charakterem emitorów zanieczyszczen;

Teren opracowania, a w przypadku jego dużej powierzchni i zróżnicowania jego czeş́ci, moga posiadać jeden z czterech stopni potencjalnej podatnossci na imisje:

- 1. słabo narażony - czyli powierzchnia o dobrym i bardzo dobrym przewietrzaniu, przy niskim pokryciu, na zboczach, wyniesieniach kulnninacjach;
- 2. średnio naraziony - to powierzchnia o dobrym przewietrzaniu ale o wysokim pokryciu terenu: intensywna i gesta zabudowa, roslinnose typu lasu;
- 3. mocno narażone - powierzchnie o słabym przewietrzaniu i niskim pokryciu terenu (np. zaglegienie zajete przez łaki);
- 4. bardzo mocno narazzone - to powierzchnie o słabym przewietrzaniu i wysokim pokryciu terenu.
Należy dodatkowo zwrócić uwage, że w zależności od sytuacji lokalnej (wpływajacej np. na poziom stę̇enia zanieczyszczeń) inné czynniki moga odgrywać podstawowa role w prawidłowym zaliczeniu do jednej z klas. Najistotniejszym elementem umoziliwiajacym prawidłowa klasyfikację jest znajomośc możliwego przebiegu procesow przyrodniczych.

Jezeli proces analizy elementów środowiska wykaże istnienie dodatkowej, lokalnej i specyficznej cechy wpływajacej na warunki klimatyczno-zdrowotne terenu nalezy go dodatkowo uwzglednić (np. sasiedztwo lasu lub dużego parku wpływajace na wystepowanie fitoncydów czy duzych zbiornikow wodrych łagodzacych klimat albo przeszkód w obiegu powierza występujacych poza granicami terenu).

Ad 3) Przy wyróżnianiu i ocenianiu terenu pod wzgledem krajobrazowo-estetycznym uwzglednia się przede wszystkim:
a) harmonie krajobrazu,
b) lad przestrzenny,
c) zróżnicowanie kolorystyczne,
d) rơżnorodnost przyrodniczo-kulturowa.

Ocena jest subiektywna i w stosunku do projektowanych funkcji wyraża się przede wszystkim w zaleceniu by w tekście planu skonkretyzowat kryteria krajobrazowoestetyczne dla projektowania realizacyjnego.

2.2. Uwarunkowania sozologiczne. Planistyczne kryteria oceny poziomu ograniczania równowagi przyrodniczej i ekologicznej wynikajace z antropogenicznego oddziaływania na środowisko - wskazanie terenów wymagających podjęcia działań rekuttywacyjnych

Stabilnosć i odpornosć środowiska stopień przekształceń antropogenicznych
Stabilność geokompleksu jest bezpośrednio zwiazzana z poziomem różnorodności biologicznej oraz z poziomem odpornosci na antropopresje-

Ekosystemami o najwyższym poziomie stabilności sa oczywiście przyrodnicze zbiorowiska naturalne, w szczegblności lasy. Naturalne to takie, ktơrych struktura roślinna odpowiada siedlisku. Nie należa wiẹc do nich lasy gospodarcze, które cechuje monokultura i ubóstwo gatunkowe. Do najmniej stabilnych ekosystemớw należq agrocenozy, charakteryzuje je poziom podobny do ekosystemów centrów miejskich. Najniższy poziom stabilności i różnorodności biologicznej posiadaja tereny komunikacji drogowej. One też sa głowna przyczyna fragmentacji przyrodniczej każdego obszaru. Pomiędzy lasami a wymienionymi wyżej formami użytkowania terenu lokuja się tereny kolejowe oraz przenysłowe (za wyjatkiem obiektów emitujaçych zwiąku toksyczne). Jeszcze wyisszy poziom różnorodnosci biologicznej posiadaja tereny zabudowy podmiejskiej oraz wiejskiej.

Oddziaływania destrukcyjne, które może powodować człowiek w relacji do ekosystemów i krajobrazów, dzielimy na (od najmniejszych do najsilniejszych wg Kostrowickiego):

- degradacji, czyli zaniku procesów przyrodniczych lub obniżenia ich wydajności; degradacji nie musi towarzyszyć ani zmiana składu ani powiazań między składnikami; degradacja jest ściśle powiazana z rozwojem składników antropogenicznych, i odnosi się głównie do poszczegolnych elementớw systemu (komponentów środowiska);
- degeneracji, czyli rozpadu zależności wewnętrznych miedzy składnikami systemu, co włánnie powoduje zanik mechanizmów stabilizujących; procesy degeneracji prowadza do fragmentacji środowiska, niszcza system dzieląc go na odizolowane fragmenty,
- dysfunkcji, czyli uproszczeniu przepływu materii i energii bez wyraźnych zmian struktury; dysfunkcja jest zwiazana z przekształcaniem ekosystemów dla potrzeb użytkowych człowieka (celowym) lub towarzyszaccym człowiekowi (bezwiednym); przykładem celo-
wego przekształcenia układu ekologicznego jest przekształcanie terenu naturalnej zieleni w pola uprawne, lub naturalnego lasu w park, praykładem bezwiednej dysfunkcji jest synantropizacja szaty roslinnej; można powiedzieć, że im wiekszy stopień antropogenizacji terenu tym większa dysfunkcyjność układów roslinnych,
- dewastacja zwana dekompozycją, czyli zmiany zarówno struktury, jak i składu oraz relacji miedzy składowymi systemu; dekompozycja jest wynikiem łacznego oddziaływania degeneracji i dysfunkcji systemu krajobrazowego (środowiska), z silna degradacja jego elementów;
Podstawowym problemem decydujacym o poziomie degradacji środowiska jest problem czysto planistyczny, czyli probletn fragmentacji terenu. Wieloletnie badania i obserwacje wskazuja jednoznacznie, że przy wysokim poziomie fragmentacji krajobrazu nawet bardzo wysokie nakłady na ochronę inìynierska nie przynosza na dłuższa metę oczzekiwanych efektów. Powodem jest oczywiście załamanie równowagi przyrodniczej, spowodowane przerwaniem ciagłtosci przebiegu procesów przyrodniczych, co powoduje zanik samoregulacyjnych mechanizmów przyrodniczych. I odwrotnie, mozaikowatość krajobrazu, czyli połaczenie różnych jego czésci strefami przyrodniczymi (wystepowanie geotonów) powoduje zachowanie trwałości procesów przyrodniczych, a to oznacza, iz̀ nawet w przypadku silnej antropogenizacji istnieja duże możliwości działań samoregulujacych i samonaprawczych.

Na zasadnicza role komunikacji i infrastruktury technicznej w procesie fragmentaryzacji krajobrazów oraz na konieczność niedopuszczania do tego procesu wskazuja przepisy ustawy POŚ. W art. 74, pkt 2 czytamy:
${ }$ Linie komunikacyjne, napowietrzne i podziemne rurociagi, linie kablowe oraz inne obiekty liniowe przeprowadza się i wykonuje w spos6b zapewniajacy ograniczenie ich oddziaływania na środowisko, w tym:

1) ochronę walorơ krajobrazowych,
2) możliwość przemieszczania się dziko żyjących zwierzat."

Budowa tras drogowych i kolejowych (a w najwiẹkszym stopniu autostrad) powoduja, ze rośnie komfort i szybkość poruszania siẹ ludzi. Natomiast dzikim zwierzetom, które dla swojego rozwoju potrzebuja różnych stodowisk, podobrnie jak wodzie i powietrzu spływaja-
cym grawitacyjnie coraz trudniej sie przemieszczać. Bariery komunikacyjne wrecz uniemożliwiaja naturalna potrzebé zmian miejsca bytowania i stalego zasilania w biogeny. Przeszkody komunikacyjne powoduja brak łaczności pomiedzy ekosystemami i populacjami, co w konsekwencji na skutek braku wymiany z otoczeniem ("dopływu swiezej krwi" oraz energii) prowadzi do stopniowego osłabienia, degeneracji, a ostatecznie do stopniowego wymierania populacji i degradacji ekosystemów. Zwierzeta zmuszone do przebywania na coraz to mniejszych powierzchniach powoli sa eliminowane ze środowiska aż do calkowitego ich wyginięcia (na odizolowanym od otoczenia obszafze 30 ha gina już naturalne populacje dzikich zwierzat), a zbiorowiska roślinne podlegaja coraz szybszej synantropizacji (szacuje sié, iż odizolowane zbiorowisko leśne o powierzchni mniejszej niz 80 ha nie jest \mathbf{w} stanie samoczynnie funkcjonować jako las naturalny).

Wiele gatunkow zwierzat potrzebuje do swojego normalnego z̀ycia, wzrostu, rozwoju i rozrodu w ciagu roku różnych biotopów, gdzie ich potrzeby moga być zaspokajane. Z tego też powodu zwierzeta okresowo zmieniaja miejsce swego bytowania.

Przykładowo: dzik wydaje potomstwo w bagnistych terenach, ale pożywienia poszukuje na obszarach rolniczych. Żaby wczesna wiosna dla złơ̇enia skrzeku wẹdruja do pobliskich stawów czy jezior, a później odbywaja powrotne wędrówki do lasów i pól. I niestety najcześsciej zdarza się, że ściéziki wędrớwek żab krzyżuja się z drogarni, a wớwczas w wypadku dużego natęzenia ruchu samochodowego nawet 90% żab ginie pod kołami samochodów.

Tzw. „postępu cywilizacyjnego" niestety raczej nie da sié powstrzymać. Generalnie ludzie nie tyle, że nie chca wracae do dawnych form transportu, ale niestety nie akceptuja jakichkolwiek form ograniczeń, choćby były one warunkiem przetrwania w miarẹ naturalnego środowiska. A jak wynika z badati nad ruchem samochodowym, 15% przejazdu samochodami odbywa się na odległości tylko do 1 km a prawie 50% do 4 kilometrów (na piechotę lub rowerem byłoby szybciej).

Jednak racjonalne działania proekologiczne sa niezbedne.
Ludzie nie tylko w centrach miasta dusza się i zatruwaja się spalinami, narażeni sa na nadmierny hałas. To samo grozi mieszkajacym wzdłuż nowoczesnych technicznie tras komunikacyjnych.

Na budowie i modernizacji autostrad i dróg szybkiego ruchu korzystaja wszyscy ich użytkownicy, natomiast bezpośrednio pokrzywdzonymi, ponoszącymi cięzar tej tzw. cywilizacji sa tylko ci nieliczni, których domy pozostawia się w pobližu jezdni, oraz dzikie zwierzęta, bedqce nieodzownymi składnikami żyjacej przyrody. Pośrednimi pokrzywdzonymi sa również spożywajacy skażone produkty z pól i lasów otaczajacych drogi oraz ekosystemy, ktớre w wyniku fragmentacji ubożeja, traca stabilnost i w kớcu przestaja funkcjonować samodzielnie.

Drogi i autostrady przecinaja pola uprawne i lasy, na i w ktorych żyje wiele gatunków różnych zwierzat. Fragmentaryzacja (fragmentacja) stodowiska, w tym przypadku poprzecinanie ekosystemów liniami komunikacyjnymi, coraz większy ruch w przypadku autostrad ich grodzenie (wymóg prawny) uniemożliwiaja wrẹcz przemieszczanie się dzikich zwierzat po starych, od lat uczeszczanych przez nie szlakach weedrownych.

W zwiazku 2 tym dla zapewnienia łaczności pomiędzy różnymi biocenozami i biotopami i umożliwienia przemieszczania się zwierząt, jak również przepływu wơd i grawitacyjnego spływu powietrza, jeżeli szlaki wedrowek dzikich zwierzat i splywu wód i powietrza krzyżuje się z autostrada lub inną droga o du̇̇ym natęzeniu ruchu, należy dzikim zwierzăt zapewnić swobodne, bezstresowe przemieszczanie się:

- poprzez specjalne przepusty pod drogami (dla małych ssaków oraz płazów) i szerokie mosty umoz̀liwiajace spływ powietrza (powietrze potrzebuje dużo większej przestrzeni niz̀ woda).
- i nad jezdniami poprzez szerokie ekologiczne mosty dla ssaków dužych;

Przykład: wydaje sié, że optymalny sposób realizacji przepustơw dla żab stworzyli łạcznie z ekologami inżynierowie szwajcarscy. Punktem wyjścia był schemat wędrowek żab i uwarunkowania instynktowne tych płazów. Żaby wiedzione instynktem rozrodczym, wiosna podażaja do pobliskiego jeziora. Szlak wedrowki przecina droga. Jest jednak obudowana wysokim na kilkadziesiat cm betonowym korytem, do którego wpadaja. Nie mogac się z niego wydostać, wedruja więc po dnie by trafić do przepustu o srednicy $40-50 \mathrm{~cm}$ i wiedzione instynktem wędruja dalej do jeziora. W efekcie żadna z żab nie ginie na drodze a do jeziora i z powrotern przechodzi populacja podobna do tej, która by przewędrowała
przy braku drogi. Takie specjalne przepusty dla żab i małych ssaków należy budować wyłacznie na liniach przecinania się ich ściezek z autostrada lub droga czy torami kolejowymi. Dlatego ich lokalizację należy uzgadniać z biologami, leśnikami i myśliwymi. Szlak weędrớwek żab (w tẹ i z powrotern) ma z reguły około $1,5 \mathrm{~km}$ szerokosci, i na takiej długosci należy wykonać przepusty co $90-100$ metrów.

W przypadku, gdy okazuje sie, iz̀ nie da sié w obecnych warunkach ograniczyc do wymaganego poziomu negatywnego oddziaływania na srodowiska (wynikać to bedzie z wykonania Przegladu ekologicznego lub Raportu oddziaływania na srodowisko), nalezy rozważyć stworzenie wokół zagrazajajcego obiektu strefy ograniczonego ui̇ytkowania, bẹdạcej obszarem izolujacym obiekt od otoczenia.

